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Abstract

Oxidative stress phenomena have been related with the onset of neurodegenerative diseases. Particularly in
Alzheimer Disease (AD), oxygen reactive species (ROS) and its derivatives can be found in brain samples of
postmortem AD patients. However, the mechanisms by which oxygen reactive species can alter neuronal function
are still not elucidated. There is a growing amount of evidence pointing to a role for mitochondrial damage as the
source of free radicals involved in oxidative stress. Among the species that participate in the production of oxygen
reactive radicals, transition metals are one of the most important. Several reports have implicated the involvement
of redox-active metals with the onset of different neurodegenerative diseases such as Alzheimer’s Disease (AD),
Progressive Supranuclear Palsy (PSP), Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s Disease (PD). On
the other hand, our previous studies have indicated that Aβ-induced deregulation of the protein kinase Cdk5
associated with tau protein hyperphosphorylation constitute a critical pathway toward neurodegeneration. In the
current paper we have shown that iron induces an imbalance in the function of Cdk5/p25 system of hippocampal
neurons, resulting in a marked decrease in tau phosphorylation at the typical Alzheimer’s epitopes. The loss of
phosphorylated tau epitopes correlated with an increase in 4-hydroxy-nonenal (HNE) adducts revealing damage
by oxidative stress. This effects on tau phosphorylation patterns seems to be a consequence of a decrease in the
Cdk5/p25 complex activity that appears to result from a depletion of the activator p25, a mechanism in which
calcium transients could be implicated.

Introduction

Oxidative stress can be defined as the loss of the
balance between the systems that produce reactive
oxygen species (ROS) and the antioxidant machin-
ery. The production of ROS is the result of oxidative
processes affecting cellular and biochemical integrity
in neuronal cells. This imbalance occurs in several
human neurodegenerative diseases and in animal mod-
els that mimics brain disorders (Markesberry 1997;

aThese authors have equally contributed to this work.

Butterfield et al. 2001; Varadarajan et al. 2000). Neu-
rodegenerative diseases involve protein aggregation,
phenomena such as those occurring in Alzheimer’s
disease (AD) (Smith et al. 2000; Joseph et al. 2001;
Maccioni et al. 2001a, b), Huntington’s disease (HD)
(Deckel 2001; Sayre et al. 2001), amyotrophic lat-
eral sclerosis (ALS) (Estevez et al. 1999; Julien
2001), prion disorders such as Creutzfeld-Jacob dis-
ease (CJD) (Brown 2001), and disorders with aggre-
gated α-synuclein such as Parkinson’s disease (PD)
and frontotemporal dementia (FTD) (Goedert et al.
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2001). In addition to aggregated α-synuclein in PD
and FTD, other protein aggregates have been detected.
These included β-amyloid peptide and tau protein in
AD, hungtintin in HD and prions in CJD. The relation-
ship between oxidative stress and protein aggregation
still remains to be elucidated. In human aging there is
an increase in oxidative stress markers and damage to
cellular proteins, DNA and lipids (Christen 2000). The
central nervous system (CNS) appears to be particu-
larly vulnerable to ROS damage. A number of factors
that contribute to the high vulnerability of the CNS
to oxidative damage include a decreased level of the
natural antioxidant glutathione in neurons, membranes
containing a high proportion of polyunsaturated fatty
acids (Hazel & Williams 1990), and a relatively in-
creased oxygen requirement due to the high metabolic
activities of the brain (Benzi & Moretti 1995).

During the last 10 years an increasing number
of papers have dealt with the relationships between
the presence of transition metals and neurodegenera-
tive disorders (reviewed in Lynch et al. 2000; Qian
& Shen 2001). Multiple lines of evidence implicate
redox-active transitions metals as mediator of oxida-
tive stress and ROS production in neurodegenerative
disorders (Perez et al. 1998; Sayre et al. 1999; Quin-
tana et al. 2000). Several studies have been conducted
to analyze the roles of Fe, Cu, Mn and Zn in the pro-
duction of oxygen and nitrogen reactive species, and
oxidative stress damage to cells as related to neurode-
generation. Particularly iron has been implicated in
the ethiopathology of several degenerative diseases of
neuronal systems such as Alzheimer disease (Lovell
et al. 1998), Parkinson (Jellinger 1999), progres-
sive supranuclear palsy (PSP) (Perez et al. 1998)
and cataracts (Goldstein et al. 2000). Iron is primar-
ily stored in ferritin, although elevated levels of iron
seem not to correlate with an increase in ferritin lev-
els or the transport protein transferrin in Alzheimer’s
patients (Fischer et al. 1997). In this paper we an-
alyze the changes in the levels of Cdk5 and p25 in
hippocampal neuronal cells and tau hyperphosphory-
lation patterns in response to acute iron treatments.
Our results indicate that iron-mediated oxidative stress
induces oxidative stress markers such as HNE adducts
and hemoxygenase-1, as compared with untreated
neuronal cells and control cells treated with the iron
chelating agent deferoxamine mesylate (Deferal). Fur-
thermore, iron does not modify the intraneuronal level
of Cdk5, even though a decreased pool of p25 was
observed. The phosphorylation at Tyr-15 in Cdk5 was
also assessed, revealing that iron did not produce any

effect on the phophorylation dynamics. Interestingly,
iron treatment of hippocampal cells with 20 µM Fe
produced a significant decrease in the exposure of
Alzheimer’s type epitopes as analyzed with PHF-1 and
AT-8 antibodies. The data suggests that the pathway
involved in iron-mediated oxidative damage could in-
volve different mechanisms than those implicated for
β-amyloid induced oxidative stress.

Materials and methods

Primary cell cultures

Hippocampal neuron cell cultures were prepared from
E18.5 rat embryos (Banker & Cowan 1977). Briefly,
the hippocampus was dissected and then incubated
in 0.25% trypsin-EDTA during 10 min at 37 ◦C.
After trypsin digestion the tissue was washed with
HBSS (GIBCO-BRL) solution and then disaggre-
gated using a fire polished Pasteur pipette. Neurons
were plated over poly-L-lysine coated coverslips at
a 5,000 cells cm2 for immunofluorescence experi-
ments and 15,000 cells cm2 for Western blots analyses.
Cultures were maintained in 10% bovine serum un-
til 3 h after plating, when the culture medium was
replaced with medium containing the N2 supplement
(GIBCO-BRL) (Bottenstein & Sato 1979). Cells were
maintained in culture for 5 days, and the N2 medium
was replaced every 48 h.

Iron treatment

Iron was supplied as iron citrate at 20 µM in a medium
containing N2 supplement. For iron chelating ex-
periments the drug Desferal (deferoxamine mesylate)
(Sigma) was supplemented at 100 µM in a medium
containing N2 supplement. Iron and iron-chelating
treatments were performed during 24 h.

Immunoblots

After iron treatments, neurons were homogenized in
RIPA buffer and the protein concentration determined
by using the Bradford analyses (Bradford 1976). Equal
quantity of each sample was resolved into 10% PAGE-
SDS gels (Laemmli 1974). After transfer onto nitro-
cellulose membranes, samples were blocked in 5%
non-fat dry milk and then incubated with the primary
antibodies for 2 h at room temperature, or overnight
at 4 ◦C. After three washing steps with PBS-Tween
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(0.05%), membranes were incubated with peroxidase-
conjugated secondary antibodies (Sigma). Finally, de-
tection was performed using the chemiluminiscence
system (ECL, Amersham Pharmacia) and samples
were analyzed in a molecular imager FX (Biorad) of
the Millennium Institute CBB core facility. We used
the following primary antibodies: AT8 that recognize
a phosphorylated epitope on tau protein; Tau-1 that
recognize an unphosphorylated epitope of tau; PHF1
that recognize an Alzheimer’s type phosphorylated
epitope on tau protein, and Tau5 that recognize a
normal phosphorylation epitope on tau protein con-
formation. A β-actin antibody (Sigma) was used to
normalize the amount of protein loaded on each well.

Immunoflourescences

Cell cultures were fixed in 4% paraformaldehyde/4%
sucrose during 15 min at 37 ◦C. After fixation, sam-
ples were permeabilized with 0.2% Triton X-100 at
room temperature during 5 min. Samples were then
washed three times in PBS and blocked with 5% BSA
during 1 h at room temperature. Primary antibodies
were diluted in 1% BSA and incubated in a wet cham-
ber for 2 h at room temperature or overnight at 4 ◦C.
After three washings with PBS, preparations were
incubated with fluorescein or rhodamine-conjugated
secondary antibodies (Sigma) during 1 h at room tem-
perature (Capote & Maccioni 1998). Finally, samples
were washed with PBS and mounted with Prolong
mounting media (Molecular Probes). Additionally,
F-actin was detected with rhodamine-conjugated Phal-
loidin at 5 µg ml (Sigma). Images were obtained from
a Zeiss confocal microscope.

Results and discussion

Overall morphology of iron-treated hippocampal
neurons

We first analyzed the effect of iron treatment on the
general morphological features and cytoskeleton or-
ganization in cultured hippocampal cells. For such
purpose, neuronal cultures maintained for 4 days
in vitro (DIV) were incubated with increasing con-
centrations of iron ranging from 0 to 80 µM (data
not shown). This study indicated that the optimal
working iron concentration to be used for subsequent
experiments was 20 µM, which is in the physiolog-
ical range of iron concentration. Hippocampal neu-
rons were at stage three of brain development by

Fig. 1. Western blots of cells extracts from hippocampal neurons
incubated in the presence or absence of iron. Neuronal cells were
incubated in the absence of iron (control), or in the presence of
100 µM Deferal or 20 µM iron. Cells were homogenized and sub-
jected to Western blot assays by using an anti-HNE adduct rabbit
polyclonal antibody. The migration of actin as internal reference
is indicated. A protein band of around 69 kDa was apparent after
exposure of neuronal cells to iron.

the time of iron administration (Dotti et al. 1988).
There were not significant morphological differences
between iron-treated and control cells, as analyzed
through immunofluorescence using a monoclonal an-
titubulin FITC conjugated antibody and staining with
rodhamine-Phalloidin for actin filaments (data not
shown). Thus, cytoskeleton staining of microtubules
and actin microfilaments showed no variations be-
tween treated and control groups. Iron does not appear
to produce major changes in the cytostructure, there-
fore funcional aspects of iron-treated neurons (Mac-
cioni et al. 2001b) was investigated in the context of
the experiments described below.

A marker for lipid-peroxidation is increased in
iron-treated neurons

It was of importance to analyze if iron-treatment pro-
duced an increase in the oxidative stress response
within the hippocampal neurons. For such purpose we
measured the levels of 4-HNE adducts. 4-HNE is an
aldehyde product of lipid peroxidation that can dam-
age primary neuron cell cultures (Mark et al. 1997),
and can induce cross-linking of cytoskeletal proteins.
As it is shown in the Figure 1, there is a marked
increase in the amount of HNE-adducts in samples
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derived from iron-treated cells. Controls using the
iron chelating agent Desferal showed similar 4-HNE
adducts levels as those observed in untreated controls,
thus supporting the observation that the increase in
HNE levels is due to iron overload. This increase in
the amount of HNE-adducts found in treated cells also
suggests that iron is triggering the oxidative stress
response inside the neurons, and affecting lipids of
the cell membrane. There is a vast amount of re-
ports dealing with the importance of oxidative stress
in the pathology of Alzheimer’s disease (reviewed
in Markesberry 1997; Smith et al. 2000). The re-
sults that imply free radical oxidative stress in AD
includes: (i) increased levels of redox-active metals
ion in AD brain; (ii) increased lipid peroxidation as
detected by an increase in HNE adducts; (iii) increased
protein, DNA and RNA oxidation, and upregulation
of antioxidant enzymes; and (iv) extensive amounts
of peroxynitrite and advanced glycation end products
(AGE)-modifications. These studies point to the effect
of iron treatment over hippocampal neurons in culture,
due to an increase in oxidative stress of the cell. An
increase in the amount of HNE-adducts in the iron-
treated neurons support this conclusion. HNE-adducts
are generated in response to lipid peroxidation induced
by an increase in oxidative stress.

The levels of Cdk5 remained unchanged after iron
treatment

Previous findings of our laboratory have implicated
a deregulation of the Cdk5 enzyme in the pathway
of Aβ-mediated neurotoxicity (Alvarez et al., 1999,
2001). Studies have also revealed that an activation
of the Cdk/p35 protein complex mediated by a sin-
gle site Cdk5 phosphorylation is responsible for the
anomalous overactivation of this protein kinase (Al-
varez et al. 2001; Patrick et al. 2000). Additionally
it has been shown that the generation of free radicals
in neurons treated with Aβ may be important in the
role of neurotoxicity (Behl et al. 1994; Harris et al.
1995; Mattson et al. 1995 a, b; Sagara et al. 1996).
In this context, we decided to analyze the Cdk5 and
the phospho-Cdk5 (at Tyr15) levels (Zuckerberg et al.
2000) in the iron-treated cells. Looking at the total lev-
els of this kinase we found no significant variations in
the amount of Cdk5 (Figure 2A). Moreover, the levels
of phosphorylated Cdk5 also remained unchanged as
analyzed with antibody that recognize phosphorylated
Tyr15 epitope on this protein (Figure 2B). However,
when we analyzed the levels of p35, one of the neu-

rospecific activators for Cdk5 we found that although
p35 did not change its levels within the range of
iron concentrations used, the expression of the solu-
ble fragment p25 lacking the N-terminal p35 protein
moiety decreased (Figure 2C). It has been reported
that soluble p25 could act as a regulatory protein con-
trolling Cdk5 activity (Patrick et al. 2000). Taken
collectively these results suggest that iron-treatment of
hippocampal cells produce a decrease in the activity of
the Cdk5/p25 complex.

Iron alter the phosphorylation patterns of brain tau
protein

Tau total levels were not altered in the cells treated
with iron as shown with a phosphorylation indepen-
dent antibody Tau-5 (Figure 3A). However, when we
looked for the phosphorylated forms of the tau pro-
tein, we unexpectedly found a significant decrease in
phosphorylated tau as shown with the AT8 antibody
that recognize tau epitopes of Alzheimer’s type (Fig-
ure 3B). Data of Figure 3 indicates that tau protein
loses its hyperphosphorylation upon iron treatment.
Studies have indicated that Cdk5 driven hyperphos-
phorylation occurs at residues Ser202-Pro, Thr205-Pro
and Ser235-Pro (Alvarez et al. 1999). Consistent with
the latter result, the amount of tau protein in its hy-
pophosphorylated form was increased in response to
iron treatments, as shown with Tau1 antibody (Fig-
ure 3C). There are two generic reactions in which
transition metals are related with some relevance to
neurodegenerative disorders. First, a metal-protein
association leading to protein aggregation; this reac-
tion can involve redox-inert metal ions such as Zn2+,
or redox-active metal ions such as Cu2+ and Fe3+.
Second, metal-catalyzed protein oxidation leading to
protein damage: this reaction involves a redox-active
metal ion such as Cu2+, Fe3+ or Mn2+ (Smith et al.
1997; Perry et al. 1998).

In the search for a mechanistic approach for the
analysis of oxidative stress effects on tau
phosphorylation patterns

Several reports have indicated that an imbalance in the
oxidative stress cellular responses could be responsi-
ble for the hyperphosphorylation of cytoskeleton pro-
teins involved in neurodegenerative diseases. This has
been extensively analyzed with respect to the role of
the microtubule-associated protein tau in the etiology
and pathogenesis of Alzheimer’s disease (Smith et al.
1998; Maccioni et al. 2001b). Nevertheless, there are
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Fig. 2. Western blots of hippocampal extracts incubated in the presence or absence of iron. Neuronal cells were incubated in the absence of
iron (control), and in the presence of 100 µM Deferal or 20 µM iron. A. Cells were homogenized and the high speed supernatants subjected
to Western blots assays by using an anti-Cdk5 antibody clone C8 from Santa Cruz. B. Cell extracts were analyzed by using and anti-Cdk5
phosphorylated at Tyr15. C. Cell extracts of cells incubated in the presence and absence of iron were subjected to Western blot analysis for p25
using an anti-p25 monoclonal antibody.

Fig. 3. Western blots of neuronal extracts incubated in the presence or absence of iron. Neuronal cells were incubated without iron (control),
and in the presence of 100 µM Deferal or 20 µM iron. A. Hippocampal extracts treated and untreated with iron analyzed by Western blots
using Tau-5 antibody which recognizes conformational epitopes for all tau variants. B. Cells were homogenized and the high speed supernatants
subjected to Western blots assays by using the AT8 antibody that recognizes Azheimer’s type tau epitopes. C. Cell extracts were analyzed by
using Tau-1 antibody that recognizes unphosphorylated tau.
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contradictory data on the phosphorylation state of tau
protein in response to oxidative stress. Some reports
point out an increase in the phosphorylation of tau
in AD brains derived tissue (Takeda et al. 2000). On
the other hand H2O2-induced oxidative stress has been
shown to produce dephosphorylation of tau protein
in rat primary neuronal cultures (Davis et al. 1997).
An increase in the amount of dephosphorylated tau
is also shown in neurons treated with glutamate (An-
derton et al. 1995; Davis et al. 1995; Fleming &
Johnson 1995) and ischaemia (Geddes et al. 1994;
Schakelford & Nelson 1996). However the decrease
of hyperphosphorylated tau protein is not dependent
on an increase of GSK3β kinase levels (Davis et al.
1997). Thus, the increase of dephosphorylated tau iso-
forms upon oxidative stress effects is likely to depend
on Cdk5, since AT8, PHF1 and Tau1 antibodies recog-
nize mainly phosphoepitopes on tau that are catalyzed
by kinases belonging to the proline directed protein
kinases family. This could be the situation for the
effects of iron observed in this study, since the deple-
tion in p25 levels could account for the low levels of
tau phosphorylation upon iron treatment. Therefore,
the fine regulation and cross-talks of these kinases in-
volved in the molecular events in the pathogenesis of
Alzheimer’s disease, needs further analysis (for review
Maccioni et al. 2001b).

The fact that different oxidative stress treatments
lead to contradictory results in the tau phosphoryla-
tion levels suggest that some of these differences could
be related to variations of intracellular messengers in
response to such treatments. Calcium ion could be
one of the possible intracellular messengers involved
in this response. Calcium is an important intracellular
messenger for neuronal signaling pathways. Through
variations in both the amplitude and frequency of in-
tracellular calcium transients, the same calcium ion
can elicit different responses. Alterations in intracel-
lular calcium concentrations are clearly involved in
modulating the phosphorylation state of tau protein
in situ. However, results have been decidedly mixed,
and there is little consensus as to the specific effects
of elevating calcium intracellular concentration on tau
phosphorylation. For example, acute treatment of pri-
mary neuronal cultures with calcium ionophores has
been reported to increase (Mattson et al. 1991; Matt-
son et al. 1992) and decrease (Adamec et al. 1997)
tau phosphorylation. The same mixed results have
been found using human neuroblastoma cell lines, as
ionophore treatment resulted in both increases (Shea
et al. 1997) and decreases (Xie & Johnson 1998) in

tau phosphorylation. Increasing intracellular calcium
by activation of N-methyl-D-aspartate receptors has
been shown to result in the dephosphorylation of tau
in rat brain slices (Fleming & Johnson 1995) and
cortical neuronal cultures (Adamec et al. 1997). In
an elegant study, it was shown that the variations of
the levels of tau phosphorylation were in fact depen-
dent on the transient calcium concentration (Hartigan
& Johnson 1999). Thus, a possible explanation for
discrepancies between different studies dealing with
the role of oxidative stress could be related with the
overall modification of the intracellular calcium home-
ostasis. These differences could be mimicking some
acute or chronic responses of the cellular machinery
to oxidative stress (Figure 4).

What are the relationships between Aβ neurotoxi-
city and oxidative stress effects in neurodegeneration?
In regard to β-amyloid effects in inducing dereg-
ulation of the Cdk5/p35 complex, Cdk5 activation
increases hyperphosphorylated tau protein in neuronal
cell cultures (Alvarez et al. 1999) and in a transgenic
mice overexpressing tau protein (Gotz et al. 2001).
Moreover, tau hyperphoshphorylation is also detected
in a double mutant mouse overexpressing amyloid pre-
cursor protein and tau (Lewis et al. 2001). The effect
of Aβ fibrils have been suggested to produce an in-
crease in the oxidative stress (Behl et al. 1994; Harris
et al., 1995; Manelli & Puttfarcken 1995; Mattson
1995a, b; for review Maccioni et al. 2001b). Also,
it has been reported that Aβ induced an increase in
tau phosphorylation (Busciglio et al. 1995; Takashima
et al. 1996 Alvarez et al. 1999).

Alzheimer’s disease is characterized by the depo-
sition of Aβ within the neocortex, associated with
neuronal loss and oxidative stress. The deposition
of Aβ is considered to be closely related to the
primary pathogenesis of familial AD. Familial AD-
linked mutations of amyloid precursor protein (APP),
presenilin-1 and presenilin-2, increase both cerebral
Aβ burden and Aβ1-42 production, underscoring the
role that Aβ metabolism plays in AD pathogenesis.
Furthermore, the deposition of Aβ in the neocortex
of transgenic mice overexpressing Aβ is accompa-
nied by many of other neuropathological features of
AD including intraneuronal tau abnormalities and neu-
ronal loss (Calhoun et al. 1998), as well as signs of
oxidative damage similar to those observed in AD-
affected brain (Smith et al. 1998). The length of the
Aβ species is considered to be one important factor
in AD pathogenesis as Aβ1-42, a minor free soluble
species in biological fluids, is enriched in amyloid
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Fig. 4. Schematic representation of the action of oxidative stress via iron effects on neurodegeneration of hippocampal cells on the basis of
data from these studies and previous investigations (for review Maccioni et al. 2001b). The mechanism considers the possible contribution of
changes in calcium transient and the depletion in Cdk5 activators (i.e., p25) in the observed changes on phosphorylation patterns on brain tau
protein.

deposits. Many studies have now confirmed that Aβ

is neurotoxic in cell culture. Hence, there is a com-
pelling argument to considered Aβ deposition as a
therapeutic target in AD. As for transition metals role
in Aβ-mediated neurotoxicity it has been suggested
that Cu2+ and Fe3+, unlike Zn2+ induce greater Aβ

aggregation under mildly acidic conditions such as
those believed to occur in AD brain (Atwood et al.
1998). Significantly, the solubility of rat or mouse
Aβ1-40 is unaffected by Zn (II) or Cu (II) at low
micromolar concentrations. Apolipoprotein E can also
modulates the precipitation of Aβ by Cu2+ and Zn2+,
which is important because ApoE isoforms segregate
with the genetic risk for AD; inheritance of the ApoE4
isoform carries the greatest risk. The ApoE4 isoform is
poorest in maintaining Aβ in a soluble form, as com-

pared with the others isoforms (ApoE2 and ApoE3),
whether the precipitating metal is Cu2+ or Zn2+ (Moir
et al. 1999). It has been also reported that some Cu/Zn
selective chelators enhance the solubilization of Aβ

deposits from post-mortem AD brain samples, sup-
porting the possibility that these metals could play a
role in the assembly of the deposits (Atwood et al.
1998). However, metals could be playing more than
this role. It has been also reported that Aβ is re-
dox active, and reduces Cu (II) or Fe (III) and then
produces H2O2 by electron transfer to O2. The metal-
reducing activity and H2O2 production of Aβ species
is enhanced in human Aβ42 as compared with human
Aβ40. Considering that neurodegeneration is a mul-
tifactorial process, these investigations suggest that
oxidative stress and Aβ amyloid, through its different
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aggregation forms, could induce different alterations
in the signaling pathways of neurons. This could be
exerted by either independent mechanisms or by con-
certed actions, and the potentiation of these signals
appears to be critical for neuronal degeneration.
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