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Abstract: Hyperinsulinemia as well as type II diabetes mellitus are among the risk factors for Alzheimer´s disease (AD). 

However, the molecular and cellular basis that link insulin resistance disorders and diabetes with AD are far from clear. 

Here, we discuss the potential molecular mechanisms that may explain the participation of these metabolic disorders in 

the pathogenesis of AD. The human brain uses glucose as a primary fuel; insulin secreted by the pancreas cross the blood-

brain barrier (BBB), reaching neurons and glial cells, and exerts a region-specific effect on glucose metabolism. Glucose 

homeostasis is critical for energy generation, neuronal maintenance, neurogenesis, neurotransmitter regulation, cell sur-

vival and synaptic plasticity. It also plays a key role in cognitive function. In an insulin resistance condition, there is a re-

duced sensitivity to insulin resulting in hyperinsulinemia; this condition persists for several years before becoming full-

blown diabetes. Toxic levels of insulin negatively influence neuronal function and survival, and elevation of peripheral in-

sulin concentration acutely increases its cerebrospinal fluid (CSF) concentration. Peripheral hyperinsulinemia correlates 

with an abnormal removal of the amyloid beta peptide (A ) and an increase of tau hyperphosphorylation as a result of 

augmented cdk5 and GSK3  activities. This leads to cellular cascades that trigger a neurodegenerative phenotype and de-

cline in cognitive function. Chronic peripheral hyperinsulinemia results in a reduction of insulin transport across the BBB 

and a reduced insulin signaling in brain, altering all of insulin’s actions, including its anti-apoptotic effect. However, the 

increase in brain insulin levels resulting from its peripheral administration at optimal doses has shown a cognition-

enhancing effect in patient with AD. Some drugs utilized in type II diabetes mellitus reduce cognitive impairment associ-

ated with AD. The link between insulin resistance and neurodegeneration and AD, and the possible therapeutic targets in 

preventing the insulin-resistance disorders are analyzed. 
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A) GLUCOSE & INSULIN SIGNALING 

1. Insulin and Insulin Receptor (IR)  

 Insulin is a small polypeptide, with a molecular weight of 
about 6,000 kDa, synthesized in significant quantities in -
cells of the pancreas. An increased level of glucose in blood 
stimulates -cells in pancreas to secret insulin by exocytosis, 
which diffuses into the islets capillary blood [1]. Insulin pro-
vides both short-term and long-term homeostatic signals, 
since it is secreted acutely in response to an increase in blood 
glucose and because plasma insulin levels are directly corre-
lated with the degree of long term increase in body adiposity 
[2,3].  

 Insulin exerts its effect on glucose uptake in peripheral 
tissue by binding to the Insulin Receptor (IRs), a cell surface 
protein, which belongs to the family of tyrosine kinase re-
ceptors. Binding of insulin leads to a rapid autophosphoryla-
tion on several tyrosine residues, which provide docking 
sites for adaptor proteins, such as the insulin receptor sub-
strate (IRS) proteins. Docking of adaptor proteins induces 
the activation of downstream pathways such as the lipid  
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kinase phosphatidylinositol 3-kinase (PI3K) and the mitogen 
activation protein kinase (MAPK) cascade [4,5]. PI3K is 
associated with almost all of the metabolic actions of insulin 
(refer to Fig. 1).  

 The effects of insulin on the central nervous system 
(CNS) are affected by its availability to this separate physio-
logical compartment. The term BBB in its most restrictive 
sense refers to the vascular bed of the CNS, which is spe-
cially modified to prevent the unrestricted transfer of mole-
cules between the blood and the extracellular fluid of the 
CNS [6]. The BBB plays a critical role in the transduction of 
signals between the CNS and peripheral tissues. It does so 
through several mechanisms, including the direct transport of 
peptides and regulatory proteins such as insulin [7]. 

 There is solid evidence that insulin can cross the BBB by 
a saturable transport process mediated by the insulin receptor 
protein [6, 8–14]. This transporter is not uniformly distrib-
uted throughout the BBB [7]. There is also evidence of local 
insulin synthesis in brain [12, 14–16], although its function 
has not been elucidated. Therefore, the origin of brain insulin 
is a subject under investigation. IRs are present in the CNS, 
and were localized for the first time by ligand autoradiogra-
phy and confirmed by immunohistochemistry and autoradio-
graphy [17–19]. CNS insulin receptors differ from their pe-
ripheral counterparts both in structure, function, and molecu-
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lar weight [20]. IRs are widely distributed in the brain with 
the highest concentration in the olfactory bulb, hypothala-
mus, cerebral cortex, cerebellum and hippocampus. They are 
expressed in all regions of brain in both neurons and glial 
cells. IRs are distributed throughout the neuronal processes 
and the cell body, but are concentrated in the synaptic end-
ings [4, 21–24]. 

 The signaling and biological effects of the insulin have 
been widely studied mainly in the “classical” insulin target 
tissues, e.g. liver, fat and skeletal muscle, with respect to 
glucose uptake, regulation of cell proliferation, gene expres-
sion and the suppression of hepatic glucose production [4]. 
However, insulin plays many roles within the CNS. It has 
been shown that some of the CNS effects of insulin are the 
opposite to those exerted in peripheral tissues. In particular, 
CNS insulin increases glucose and inhibits feeding, whereas 
serum insulin decreases glucose and increases feeding 
[14,25]. Thus, to some extent, insulin acts as its own coun-
terregulatory hormone, with CNS insulin producing features 
of insulin resistance [6]. Thus, in the CNS, insulin partici-
pates in the regulation of feeding behavior and energy ho-
meostasis, neuronal maintenance, neurogenesis, and neuro-
transmitter regulation. In addition, it has a role on cognitive 

functions as supported by neuronal activity, and in the con-
trol of aging-related processes [26]. 

2. Glucose, Insulin and Cognition 

 The brain consumes metabolic energy disproportionate to 
its size. It uses glucose (primary fuel), largely through oxida-
tive metabolism. Glucose deprivation leads to coma, sei-
zures, and produces potentially permanent brain damage. 
Glucose is continually supplied from cerebral blood flow and 
must be transported into the brain through the endothelial 
cells that form the BBB to reach neurons and glial cells by 
facilitated diffusion. Carriers of glucose are the glucose 
transport proteins (GLUT), which allow glucose entry into 
individual cells (neurons and glial cells) [27]. Animal mod-
els show that the cerebral blood flux depends on glucose 
levels in the blood stream; there is a compensatory mecha-
nism to maintain adequate delivery of glucose fuel to the 
brain [28,29]. 

 Evidence suggests regionally specific effects of insulin 
on brain glucose metabolism. Insulin does not seem to influ-
ence basal cerebral glucose metabolism or transport of glu-
cose into the brain [30–35]. Insulin affects the use of glucose 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representation of molecular pathways linking insulin resistance and neurodegeneration, and therapeutic target of 

PPAR  ligands. 

(a) Peripheral insulin resistance results in periods of hyperinsulinemia to overcome the hyperglycemia. (b) Hyperinsulinemia, with the possi-

ble contribution of central insulin resistance, leads to increased insulin levels in the CNS, that kidnaps IDE resulting in a decrease of A  

degradation, which upregulates cdk5 with consequent tau hyperphosphorylation, in the meantime that increases A  oligomers. (c) Peripheral 

insulin resistance is associated with decreased insulin signaling in neuron, that also can be a result of central insulin resistance, with de-

creased PI3K and PKB activity, leading an increased GSK3  activity. Cdk5 and GSK3  activities increase tau phosphorylation and tangles 

formation. (d) A  oligomers are more toxic than Senile Plaques, they are one of the responsible elements for activation of the innate immune 

response in the glia. (e) These oligomers are among factors that lead to Neuroinflammation. (f) Downregulation of PKB activity and a high 

GSK3  activity are also related with pro-apoptotic pathways that result in neurodegeneration. (g) Thus, chronic hyperinsulinemia (without 

hyperglicemia) results in down-regulation of insulin transporters in the blood brain barrier and decreases the levels of insulin in the CNS. 
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in specific regions of the brain, most likely by selective dis-
tribution of insulin-sensitive GLUT isoforms, which overlap 
with the distribution of insulin and IRs in the brain [36–39]. 
Insulin, through the IRs localized in the hypothalamus, con-
tributes to the regulation of food intake and energy homeo-
stasis and leads to changes in body weight by anorexigenic 
or orexigenic effects produced by increasing or decreasing 
levels of insulin in brain respectively. Moreover, insulin in 
the CNS modifies peripheral glucose metabolism by increas-
ing insulin sensitivity in peripheral tissue [10,40,41]. 

 In brain, insulin is not a major regulator of glucose me-
tabolism. In vitro studies showed that insulin regulates glu-
cose uptake of glial cells, but did not influence neuronal glu-
cose uptake [42,43]. Insulin can influence neurons directly 
by mechanisms unrelated to modulation of glucose uptake. 
Neurotransmitter release, neuronal-outgrowth, tubulin activ-
ity, neuronal survival and synaptic plasticity are all directly 
modulated by insulin [5, 44–46] 

 Studies in human and animal models have shown that an 
increase in brain insulin has a cognition-enhancing effect, 
independently of changes in peripheral glucose [47–51]. 
Moreover, there is cumulative evidence to support the effects 
of insulin and IRs on cognition, mediated by a modulatory 
role in learning and memory processes [1,4,5,26,52]. Insulin 
also modulates CNS concentration of neurotransmitters as-
sociated with important roles in cognition such as acetylcho-
line, norepinephine and dopamine [53,54]. It has been shown 
that, in an early stage of memory formation, an alteration of 
gene expression of IRs in the rat hippocampus in response to 
learning experiences occurs [55]. Taken together, all these 
findings suggest that insulin may influence normal memory 
function (Figs. 1 and 2). 

 The biological basis of learning and memory processes 
resides in synaptic strength, where insulin signaling plays a 
modulator role on synaptic long-term potentiation (LTP) and 
long-term depression (LTD), two opposite forms of activity-
dependent synaptic modifications. Insulin signaling modu-
lates synaptic plasticity by: 1) Promoting the recruitment of 
GABA receptors on post-synaptic membranes; 2) Influenc-
ing NMDA receptor conductance (neuronal Ca

2+
 influx); and 

3) Regulating AMPA receptor cycling [56–62]. 

B) INSULIN RESISTANCE 

1. Insulin Resistance 

 Reduced sensitivity to insulin by the main target organs 
(liver, fat, muscle) is known as Insulin Resistance, where 
there is an elevated level of insulin in the bloodstream (hy-
perinsulinemia). This reduced sensitivity also results in im-
paired response to oral glucose (referred to as Impaired Glu-
cose Tolerance), where it takes longer to restore normal glu-
cose levels after eating. Peripheral Insulin Resistance is 
known to be the major contributor to the progression to hy-
perglycemia and Type II Diabetes Mellitus, since the pan-
creas can not secrete enough insulin to overcome the insulin 
resistance and prevent these events. Hyperinsulinemia with-
out hyperglycemia is an indication of Insulin Resistance, a 
pre-diabetic condition. There is evidence of an increased risk 
of cognitive decline and neurodegeneration in populations 
with peripheral insulin resistance (hyperinsulinemia without 
hyperglycemia) [63–66]. 

2. Hyperinsulinemia/Hyperglicemia in the Brain 

 Alterations in circulating glucose levels can negatively 
affect the CNS because neurons have a consistently high 
glucose demand. Neuronal glucose uptake depends on ex-
tracellular glucose concentration, but chronic hyperglycemia 
results in cellular damage (glucose neurotoxicity). Therefore, 
a tight metabolic control is very important [67–69]. Studies 
on hyperglycemic rodents have shown cognitive im-
pairment in addition to functional and structural altera-
tions in the brain [68]. 

 A growing body of evidence suggests that peripheral 
insulin abnormalities increase the risk for memory loss and 
neurodegenerative disorders such as AD, but acute and 
chronic hyperinsulinemia have opposing effects on memory 
performance (Fig. 2). A possible explanation for that is dis-
cussed below. Chronic hyperinsulinemia has a negative in-
fluence on memory, since type II Diabetes Mellitus has been 
associated with long-term impairment in cognitive function 
in humans and animal model studies. On the other hand, 
acute increases of peripheral or brain insulin have an en-
hanced memory performance effect [47,49, 63, 70–73]. Pre-
diabetic conditions with hyperinsulinemia but not chronic 
hyperglycemia may persist for many years before progres-
sion to type II Diabetes Mellitus. Hyperinsulinemia exposes 
the cells (including neurons) to unphysiologically high levels 
of insulin for a long period of time. Studies have shown that 
high concentrations of insulin affect the function and sur-
vival of neurons in culture by sensitizing them to toxin and 
stress-induced insults [74].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic representation of the relationships between 

insulin signaling, learning, memory and neuronal survival. 

Acute high levels of insulin in the CNS have been related with the 

improvement of cognitive function and Neuronal Survival by a 

pathway that it involves the NMDA-R, PI3K and PKB activity and 

inactivation of GSK3 . 

 

 Moreover, a relationship between glycosylation of tau 
proteins, its aggregation ability and the neurodegenerative 
phenotype has been revealed [75]. Peripheral injection of 
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high doses of insulin in mice caused a rapid and dose-
dependent increase in tau phosphorylation in the CNS [76]. 
In vitro studies indicate that insulin modulates the levels of 
A  peptide by promoting the release of intracellular A . 
Physiological insulin levels promote A  clearance by peptide 
degradation, a mechanism that involves insulin degrading 
enzyme (IDE) activity (detailed below in section III.1) [77–
79]. A low level of insulin in brain reduces A  release from 
intracellular to extracellular compartments and high levels 
reduce A  degradation in the extracellular compartment [80–
84]. 

 Impaired verbal memory has been reported in individuals 
with hyperinsulinemia and not chronic hyperglycemia [85]. 
Epidemiological studies have indicated that hyperinsuline-
mia, independent of glucose levels, constitutes one of the 
risk factors for dementia in the type II diabetes mellitus 
population as well as in the non-diabetic population, since 
the raising of peripheral insulin concentration acutely in-
creases its concentration in the CSF and brain [63,65,70,86]. 
Prolonged peripheral hyperinsulinemia downregulates BBB 
functions and the IR activity and reduces insulin transport 
into the brain [86, 87]. Thus, hyperinsulinemia during the 
development of type II diabetes mellitus is neurotoxic. De-
velopment of these complications depend on the duration of 
a diabetic condition, upregulation of circulating glucose, 
glycosylated proteins, etc., and the quality of metabolic con-
trol [67]. 

 Insulin resistance, hyperinsulinemia and type II Diabetes 
Mellitus are associated with elevated inflammatory markers 
and increased risk for AD [63,65,88–90] (Fig. 1). In adults 
with type II Diabetes Mellitus and impaired glucose toler-
ance, an abnormal level of soluble TNF-R1 (death receptor 
domain) and TNF-R2 (cell survival) has been reported. In-
creased levels of TNF-R1 and decreased levels of TNF-R2 
have also been observed in AD brain [91–93]. 

3. Impaired Glucose Uptake and Metabolism in the AD 
Brain 

 Studies using positron emission tomography (PET) have 
demonstrated that glucose metabolism is reduced markedly 
in the cerebral cortex in early stage AD and in the mild cog-
nitive impairment (MCI) that is believed to be a precursor of 
AD, and that the reduction parallels the worsening of demen-
tia symptoms, establishing that glucose uptake and metabo-
lism are impaired in AD brain [94]. However, the causes of 
the impairment of glucose uptake/metabolism in AD brain 
are not well understood. Several findings suggest that this 
impairment is a cause, rather than a consequence, of neu-
rodegeneration. The impaired cerebral glucose consumption 
is more severe than the impaired oxygen consumption in 
AD, suggesting that the former is not the result of the latter.  

 The brain is highly dependent upon glucose as a source 
of energy. The impaired glucose uptake/metabolism might 
lead to deficient synaptic activity and cellular homeostasis, 
as these are very sensitive to energy deficiency. Impaired 
glucose uptake/metabolism also causes reduced formation of 
acetyl-CoA and, consequently, affects the synthesis of ace-
tylcholine [95]. Deficient activity of the cholinergic system 
is one of the most significant biochemical deficiencies in AD 
pathology, discovered decades ago [96], and is the basis of 

the first generation of AD drugs, the cholinesterase inhibitors 
donepecil, galantamine and rivastigmine. The reduced cellu-
lar availability of acetyl-CoA may also cause decreased for-
mation of both intracellular cholesterol and neurosteroids, 
which are the main lipid components of cell membranes. 
Membrane abnormalities have been observed in AD brains. 

 The A  peptide (or A  oligomers) has been shown to 
cause decreased glucose uptake/metabolism [97]. Further-
more, apolipoprotein E4 (apoE4) and diabetes mellitus are 
known to be major risk factors for AD [98]. Individuals with 
apoE4 alleles have lower brain glucose metabolism than 
those carrying apoE2 or apoE3 alleles. Diabetes patients are 
characterized by deficient glucose uptake/metabolism. 
Hence, it can be speculated that apoE4 genotype together 
with diabetes may increase the risk for AD by impairment in 
brain glucose uptake/metabolism. 

C) LINK BETWEEN INSULIN RESISTANCE AND 
ALZHEIMER DISEASE 

1. Relationships between Insulin Resistance and AD 
Pathogenesis 

 Abnormalities in insulin metabolism, characteristic of 
type II diabetes, are among the major factors thought to 
mechanistically influence the onset of AD. These abnormali-
ties are thought to play a role in AD via their influence on 
the synthesis and degradation of A  and as a consequence of 
the cascade of neuronal alterations resulting from the effects 
of danger/alarm signals from oligomeric amyloid species 
(Fig. 1) [99]. Additionally, recent studies have indicated that 
certain signal transduction pathways downstream of the insu-
lin receptor may also promote the generation of A  peptides 
by modulating the cleavage of the parent A  precursor pro-
tein (A PP) at the -secretase site, a cleavage site necessary 
for A  amyloidogenicity [100]. 

 Although this evidence tentatively suggests that type II 
Diabetes Mellitus might play an important role in AD 
through mechanisms that involve A  peptide generation, 
alternative studies suggest that insulin may also provoke 
amyloid accumulation by limiting A  degradation via direct 
competition for the IDE. Another major substrate of IDE is 
the A  peptide. The IDE degrades monomeric but not the 
oligomeric A  peptide [77,78]. IDE is a zinc-metallo-
peptidase that preferentially cleaves proteins with a propen-
sity to form -pleated sheet-rich amyloid fibrils, such as A  
peptides. This relationship of IDE with A  is supported by 
recent evidence indicating that IDE activity in the brain is 
negatively correlated with A  content, and that IDE expres-
sion is decreased in the AD brain [83]. Insulin regulates the 
levels of IDE. Hyperinsulinemia reduces A  degradation by 
reduction of IDE levels and binding competition (Fig. 1) 
[80–84]. 

 It has been reported that A 40 and A 42 reduce insulin 
binding and insulin receptor autophosphorylation. The re-
duction in this binding seems to be caused by a decrease in 
the affinity of insulin to the insulin receptor. This suggests 
that A  is a direct competitive inhibitor of insulin binding 
and action [101], an aspect that demands further investiga-
tion. 
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 The strikingly reduced CNS expression of genes encod-
ing insulin, IGF-I, and IGF-II, as well as the insulin and IGF-
I receptors in AD led to some authors to suggest that AD 
may represent a neuro-endocrine disorder that resembles 
diabetes mellitus [102]. In addition, the same researchers 
demonstrated that alterations insulin levels and insulin-like 
growth factor expression and deterioration of insulin func-
tion with the course of AD progression, were linked with an 
acetylcholine decrease in the brain [103]. There is evidence 
supporting the notion that high plasma insulin levels and 
peripheral insulin resistance affect A 42 levels, inflamma-
tion in the CNS and cognitive performance of individuals 
[104]. From such evidence, a model can be constructed de-
scribing how this metabolic profile contributes to the patho-
genesis of AD. There are several etiological factors leading 
to the final common expression in the AD pathology [103]. 

 Insulin plays an important role in memory and brain 
function in general. Peripheral hyperinsulinemia and insulin 
resistance induce a number of deleterious effects in the CNS 
that interfere with these functions, in a manner that is exac-
erbated by obesity and aging. In particular, effects on A  
regulation and neuroinflammation are potential culprits in 
promoting aging-related memory impairment in some cases 
of AD (see Fig. 1). This possibility has obvious relevance for 
adults with type II Diabetes Mellitus. However, it is worth 
noting that hyperinsulinemia and insulin resistance afflict 
many non-diabetic adults with conditions such as obesity, 
impaired glucose tolerance, cardiovascular disease, and hy-
pertension [105–107]. 

 Indeed, in recent years, cumulative evidence has been 
gained on the involvement of alteration in neuronal lipopro-
teins activity, as well as a role of cholesterol and other lipids 
in the pathogenesis of this neurodegenerative disorder. In 
relation to hypercholesterolemia, several reports have shown 
that elevated serum cholesterol levels and elevated levels of 
A  are linked with AD risk. Cholesterol influences the activ-
ity of the enzymes involved in the metabolism of the amy-
loid precursor protein and in the production of A , but the 
mechanism by which cholesterol affects A  production and 
metabolism is not fully understood [108]. 

2. Metabolomics of Insulin in the Context of Neuronal 
Survival and AD Onset 

 To understand the link between insulin, insulin resis-
tance, neuronal survival and AD onset, it is important iden-
tify the link between the key molecules involved in the intra-
cellular pathways utilized by insulin to exert its effect. Insu-
lin resistance in the periphery produces acute episodes of 
hyperinsulinemia without chronic hyperglycemia. High lev-
els of insulin in plasma are correlated with high levels of 
insulin in brain (Fig. 1) [86], leading to neurotoxic effects 
[74].  

 Studies in transgenic mouse models of AD have shown 
that diet-induced peripheral insulin resistance promotes amy-
loidosis suggesting that peripheral insulin resistance can in-
fluence A  production in the brain [84,109]. These findings 
in association of a reduced basal signaling of insulin in cor-
tex with an increased degree of AD neuropathology argue 
that peripheral insulin resistance promotes neuronal insulin 

resistance when genetic background predisposes to AD. 
However, further studies are necessary to clarify this. 

 Insulin binding to the IRs leads to autophosphorylation of 
the IRs which initiates several signaling cascades. One of 
these is the lipid kinase phosphatidylinositol 3-kinase (PI3K) 
cascade, which is associated with almost all of the metabolic 
action of insulin. PI3K activation leads to the activation of 
Protein Kinase B (PKB or Akt) and Glycogen Synthase 
Kinase 3  (GSK3 ). Activation of PKB inactives GSK3  
by phosphorylation [110,111]. The neuroprotective effect of 
IGF-1 results from activation of PKB [112]. Expression of 
PKB protects neurons against toxin-induced death and pro-
tects PC12 cells against A  peptide-induced death [113–
115]. 

 Cole and coworkers have reviewed the molecular link 
between insulin action, diabetes and AD [5]. Insulin resis-
tance in the periphery produces hyperinsulinemia, while in 
the brain it decreases IDE activity. The effects of IDE in-
clude abnormal A  removal and plaque formation, increased 
cdk5 activity, and increased activity of GSK3  (Fig. 1). Dys-
regulation of cdk5 is a major molecular event in the pathway 
to neurodegeneration [116–118]. GSK3  activity has been 
implicated in the pathology of AD in different ways. AD 
brain exhibits a dysregulated expression of this kinase as 
well as changes in its activity [119,120], leading to hyper-
phosphorylation of tau and tangle formation. Several studies 
have shown that GSK3  activity is required for induction of 
neuronal apoptosis (refer to Fig. 1), while inhibition of 
GSK3  promotes neuronal survival (illustrated schematically 
in Fig. 2) (reviewed by Cole et al, 2007 [5]). Insulin signal-
ing induces the phosphorylation and inhibition of GSK3  
[110]. 

 All of the negative effects of hyperinsulinemia in the 
CNS and their associated functions could be exacerbated or 
similarly produced by a central insulin resistance in conjunc-
tion with the peripheral insulin resistance or secondary to it. 
This is supported by the evidence of central molecular insu-
lin resistance in a mouse model of AD with induced periph-
eral insulin resistance, where a reduced basal signaling (re-
duced phosphorylation of IR, PKB and GSK3, as well as 
decreased PI3K activity) was shown in the cerebral cortex 
(Fig. 1) [84,109]. 

 Studies of insulin action in brain are focused on the basic 
effects of insulin signaling. Insulin acts like a neurotrophic 
factor, since it promotes neuronal survival [46,121]. Studies 
in vitro of intracellular pathways utilized by insulin for syn-
aptic plasticity have identified a link to neuronal protection 
against cell death [46,121]. Intracellular pathways utilized by 
insulin to influence synaptic plasticity and neuronal survival 
converge on the PI3K pathway (Fig. 2) (reviewed by van der 
Heide et al. 2006 [1]). The increased catalytic activity of 
PI3K results in the phosphorylation and activation of anti-
apoptotic substrates [1]. PKB is of major importance in me-
diating the effects of PI3K in neuronal survival, and in vitro 
and in vivo studies have shown that activated PKB protects 
against apoptosis. Dominant negative PKB does not [122–
124]. Studies on insulin-facilitated LTP and LTD induction 
show that this process is completely NMDA receptor-
dependent [62]. PI3K activity is required for LTP mainte-
nance in the hippocampal CA1 region [125]. An increased 
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gene expression of IR in the rat hippocampus in response to 
learning experiences has been shown [55]. All together, the 
effect of insulin on neuronal survival and its effects on 
NMDA-dependent synaptic plasticity, require similar intra-
cellular signaling routes (schematically illustrated in Fig. 2). 

Clinical Studies on Insulin Resistance and AD 

 In the last five years a growing body of evidence has 
been developed suggesting that glucose metabolism is asso-
ciated with the pathogenesis of AD, age-related cognitive 
decline and neuroinflamation [90,126–128]. Intravenous 
insulin infusion in healthy, eugylcemic older subjects (a pro-
cedure known as hyperinsulinemic-euglycemic clamp) in-
duces a facilitation of memory while it increases cerebrospi-
nal fluid levels of A 1-42 [126]. Insulin mediated memory 
facilitation is less marked at supraoptimal levels of insulin 
and in subjects with AD the hyperinsulinemic facilitation of 
memory is obtained at higher concentrations of insulin when 
compared with normal subjects. This phenomenon is more 
clear in patients who are not carriers of the APOE- 4 gene 
[51]. 

 The clinical effects of insulin and/or glucose administra-
tion on memory in patients with AD have been extensively 
reviewed [128,129]. As a result, it has been suggested that 
moderate administration of both glucose and insulin could 
improve memory in patients. These observations appear to 
be in disagreement with Gispen and Biessels [68] who de-
scribed that both chronic hyperglycemia and chronic hyper-
insulinemia are associated with accelerated cognitive decline 
in the elderly. This apparent discrepancy may be explained 
in part by the mechanisms underlying spontaneous chronic 
hyperglycemia and chronic hyperinsulinaemia during insulin 
resistance. Hoyer [130] has comprehensively addressed this 
issue in his recent review. He classified AD as an ‘‘insulin 
resistant brain state’’. This interesting hypothesis is sup-
ported by a recent clinical trial performed by Reger et al. 
[73] where the administration of intranasal insulin improved 
cognitive performance in elderly patients. In this pilot study, 
the authors administered 20 IU BID intranasal insulin to 13 
patients and compared them with 12 controls receiving pla-
cebo. They found no changes in plasma levels of glucose and 
insulin with the treatment. However the insulin-treated group 
retained more verbal information after a delay and showed 
improved attention and functional status. Insulin treatment 
also increased the A 1-40/A 1-42 ratio in plasma. Previous 
studies by the same author [131] demonstrated that this ef-
fect was restricted to APOE- 4 negative subjects. 

 Modulation of the response to insulin by the APOE geno-
type has led to speculation regarding whether APOE- 4 is an 
independent risk factor for AD, so that people carrying this 
allele do not have a greater risk of being insulin resistant 
than the general population. In the other hand, people that 
are insulin resistant are at risk of developing AD regardless 
of their APOE- 4 status [128]. The evidence that favors the 
role of insulin resistance in AD has opened new perspectives 
for treatment options. The family of antidiabetic Thia-
zolidinedione drugs function as agonists of the nuclear re-
ceptor peroxisome proliferator-activated receptor (PPAR)-  
and have been shown to improve sensitivity to insulin by 
decreasing circulating insulin and increasing insulin medi-

ated glucose uptake. In addition to these functions, they also 
have been demonstrated to diminish the levels of multiple 
inflammatory mediators (Fig. 1) (reviewed by Jiang, 2008, 
Rojo et al., 2008 [90,133]). Studies in cellular models have 
shown that PPAR  agonists down-regulate A  peptide depo-
sition that occurs in AD, although the mechanisms of this 
phenomenon demand further investigation [133–135]. Tro-
glitazone, a thiazolidinedione, significantly reduced phos-
phorylation of tau protein at Ser202 and Ser396/404, resi-
dues phosphorylated in early and later stages of neurofibril-
lary tangle accumulation in AD and other neurodegenerative 
disorders (Fig. 1, PPAR  ligands) [136]. 

 Interestingly, the PPAR  Pro12Ala polymorphism, which 
is associated with an increased risk of type II diabetes [137], 
has been found to influence plasma 24S-hydroxycholesterol/ 
cholesterol ratio in AD patients. This fact is important con-
sidering that elevated cholesterol in blood is a risk factor for 
AD and 24S-hydroxycholesterol is the major product of 
brain cholesterol metabolism and is released into the blood 
stream [108]. At present pioglitazone and rosiglitazone are 
the two thiazolidinediones that are available for clinical use. 
Both share the adverse side-effect of generating edema and 
potentially heart failure [138]. A recent meta-analysis [139] 
revealed a possible increased risk of myocardial infarction 
and a borderline increase in the risk of death from cardiovas-
cular causes in patients receiving rosiglitazone. However, the 
significance of the data has been debated [140]. Thus, 
rosiglitazone as a possible therapy for AD is an active field 
of clinical investigation. 

 Rosiglitazone has been shown to preserve memory func-
tion in AD patients when compared with a placebo-assigned 
group. In a double blind trial, 20 mild AD or MCI patients 
who received 4 mg of rosiglitazone for 6 months showed 
improvements in memory and selective attention, associated 
with less reduction in plasma A -40 and A -42 when com-
pared to 10 control patients [129]. This stabilization of 
plasma A  could be of importance, considering that plasma 
A 1-42 decreases with AD progression, as previously de-
scribed [82]. Another study on 511 AD patients treated with 
2 mg, 4 mg or 8 mg of rosiglitazone or placebo found that 
there is an improvement in cognitive function when evalu-
ated by the Alzheimer’s Disease Assesment Scale-cognitive 
(ADAS-cog) for patients treated with 8 mg of rosiglitazone, 
and that this result is restricted to those patients who are not 
carriers of APOE- 4 [141]. This modulation of the effect of 
rosiglitazone by the APOE genotype strongly resembles 
what has been observed for insulin and support the recom-
mendation for APOE genotyping of patients at risk of cogni-
tive decline [142]. Even though this evidence is still prelimi-
nary, it supports the role of PPAR  ligands with their dual 
action over insulin resistance and on neuroinflammation as a 
novel strategy for the treatment of cognitive decline associ-
ated with AD and stress the importance of further studies in 
this perspective. 
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